Extensions 1→N→G→Q→1 with N=C18 and Q=C22xC4

Direct product G=NxQ with N=C18 and Q=C22xC4
dρLabelID
C23xC36288C2^3xC36288,367

Semidirect products G=N:Q with N=C18 and Q=C22xC4
extensionφ:Q→Aut NdρLabelID
C18:1(C22xC4) = C22xC4xD9φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18:1(C2^2xC4)288,353
C18:2(C22xC4) = C23xDic9φ: C22xC4/C23C2 ⊆ Aut C18288C18:2(C2^2xC4)288,365

Non-split extensions G=N.Q with N=C18 and Q=C22xC4
extensionφ:Q→Aut NdρLabelID
C18.1(C22xC4) = C4xDic18φ: C22xC4/C2xC4C2 ⊆ Aut C18288C18.1(C2^2xC4)288,78
C18.2(C22xC4) = C42xD9φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.2(C2^2xC4)288,81
C18.3(C22xC4) = C42:2D9φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.3(C2^2xC4)288,82
C18.4(C22xC4) = C4xD36φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.4(C2^2xC4)288,83
C18.5(C22xC4) = C23.16D18φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.5(C2^2xC4)288,87
C18.6(C22xC4) = C22:C4xD9φ: C22xC4/C2xC4C2 ⊆ Aut C1872C18.6(C2^2xC4)288,90
C18.7(C22xC4) = Dic9:4D4φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.7(C2^2xC4)288,91
C18.8(C22xC4) = Dic9:3Q8φ: C22xC4/C2xC4C2 ⊆ Aut C18288C18.8(C2^2xC4)288,97
C18.9(C22xC4) = C4:C4xD9φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.9(C2^2xC4)288,101
C18.10(C22xC4) = C4:C4:7D9φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.10(C2^2xC4)288,102
C18.11(C22xC4) = D36:C4φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.11(C2^2xC4)288,103
C18.12(C22xC4) = C2xC8xD9φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.12(C2^2xC4)288,110
C18.13(C22xC4) = C2xC8:D9φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.13(C2^2xC4)288,111
C18.14(C22xC4) = D36.2C4φ: C22xC4/C2xC4C2 ⊆ Aut C181442C18.14(C2^2xC4)288,112
C18.15(C22xC4) = M4(2)xD9φ: C22xC4/C2xC4C2 ⊆ Aut C18724C18.15(C2^2xC4)288,116
C18.16(C22xC4) = D36.C4φ: C22xC4/C2xC4C2 ⊆ Aut C181444C18.16(C2^2xC4)288,117
C18.17(C22xC4) = C2xC4xDic9φ: C22xC4/C2xC4C2 ⊆ Aut C18288C18.17(C2^2xC4)288,132
C18.18(C22xC4) = C2xDic9:C4φ: C22xC4/C2xC4C2 ⊆ Aut C18288C18.18(C2^2xC4)288,133
C18.19(C22xC4) = C2xD18:C4φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.19(C2^2xC4)288,137
C18.20(C22xC4) = C4xC9:D4φ: C22xC4/C2xC4C2 ⊆ Aut C18144C18.20(C2^2xC4)288,138
C18.21(C22xC4) = C22xC9:C8φ: C22xC4/C23C2 ⊆ Aut C18288C18.21(C2^2xC4)288,130
C18.22(C22xC4) = C2xC4.Dic9φ: C22xC4/C23C2 ⊆ Aut C18144C18.22(C2^2xC4)288,131
C18.23(C22xC4) = C2xC4:Dic9φ: C22xC4/C23C2 ⊆ Aut C18288C18.23(C2^2xC4)288,135
C18.24(C22xC4) = C23.26D18φ: C22xC4/C23C2 ⊆ Aut C18144C18.24(C2^2xC4)288,136
C18.25(C22xC4) = D4xDic9φ: C22xC4/C23C2 ⊆ Aut C18144C18.25(C2^2xC4)288,144
C18.26(C22xC4) = Q8xDic9φ: C22xC4/C23C2 ⊆ Aut C18288C18.26(C2^2xC4)288,155
C18.27(C22xC4) = D4.Dic9φ: C22xC4/C23C2 ⊆ Aut C181444C18.27(C2^2xC4)288,158
C18.28(C22xC4) = C2xC18.D4φ: C22xC4/C23C2 ⊆ Aut C18144C18.28(C2^2xC4)288,162
C18.29(C22xC4) = C22:C4xC18central extension (φ=1)144C18.29(C2^2xC4)288,165
C18.30(C22xC4) = C4:C4xC18central extension (φ=1)288C18.30(C2^2xC4)288,166
C18.31(C22xC4) = C9xC42:C2central extension (φ=1)144C18.31(C2^2xC4)288,167
C18.32(C22xC4) = D4xC36central extension (φ=1)144C18.32(C2^2xC4)288,168
C18.33(C22xC4) = Q8xC36central extension (φ=1)288C18.33(C2^2xC4)288,169
C18.34(C22xC4) = M4(2)xC18central extension (φ=1)144C18.34(C2^2xC4)288,180
C18.35(C22xC4) = C9xC8oD4central extension (φ=1)1442C18.35(C2^2xC4)288,181

׿
x
:
Z
F
o
wr
Q
<